Eschar Removal by Bromelain based Enzymatic Debridement (Nexobrid®) in Burns: An European Consensus

Christoph Hirche¹, Antonella Citterio², Henk Hoeksema³, Ján Koller⁴, Martina Lehner⁵, José Ramón Martinez⁶, Stan Monstre⁶, Alexandra Murray⁷, Jan A. Plocek⁸, Frank Sandner⁹, Alexandra Schulz¹⁰, Benjamin Ziegler¹, Ulrich Knesser¹

¹BG Trauma Center, Hand-, Plastic and Reconstructive Surgery, Burn Center, University of Heidelberg, Ludwigshafen, Germany
²Anesthesiology, Plastic and Reconstructive Surgery, Burn Unit, Ospedale Niguarda, Milano, Italy
³Burn Unit, University Hospital, Gent, Belgium
⁴Burn Department, University Hospital Bratislava, Ruzinov University Medicinálna nemocnica Bratislava, Bratislava, Slovak Republic
⁵Department for Plastic, Aesthetic and Reconstructive Surgery, University Hospital St. Pölten, St. Pölten, Austria
⁶Burn Unit, Hospital Universitario La Paz, Madrid, Spain
⁷Burn Unit, Stoke Mandeville Hospital, Aylesbury, Buckinghamshire, United Kingdom
⁸Division of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
⁹Burn Center with Plastic Surgery, Unfallkrankenhaus Berlin, Berlin, Germany
¹⁰Department of Plastic Surgery, Burn Center, University of Witten/Herdecke, Cologne-Marheim Medical Center, Germany.

Introduction:
There is increasing evidence that Enzymatic Debridement is a powerful tool to remove eschar in burn wounds, reducing blood loss, the need for autologous skin grafting and the number of wounds requiring surgical excision, reducing rate of burn wound infection and the length of hospital stay.

Method:
In order to assess the role and advantages of Bromelain based Enzymatic Debridement (Nexobrid®) beyond the scope of the existing literature and in view of users’ experience, a European Consensus Meeting was scheduled to provide statements for application and user orientated guidelines to contribute to successful treatment (Frankfurt, Germany, January 2017), hosted by BG Trauma Center Ludwigshafen, Germany.

Multistep process:
• Systematic literature review (2000-2016) applying Oxford Level of Evidence Classification System
• Pre-formulated statements on various issues
• Expert panel discussion and voting on panel statements (Austria, Belgium, Germany, Italy, Slovak Republic, Spain, Switzerland and United Kingdom) with plastic surgeons, burn surgeons, non-physician panelists), one vote per center per statement
• Standard of Care (SOC): surgical excision with tangential knife and/or hydro surgery were regarded as surgical standard of care (SOC) and if applicable compared to Enzymatic Debridement.

Results:
Sixty-eight (68) consensus statements were provided for the use of Enzymatic Debridement. The degree of consensus was remarkably high, with a unanimous consensus in 88.2% of statements, and lowest degree of consensus of 70% in only 3 statements. This consensus may serve as preliminary guidelines for the use of Enzymatic Debridement with user-orientated recommendations until further evidence and systematic guidelines are available.

Conclusion:
This consensus may serve as preliminary guidelines for the use of Enzymatic Debridement with user-orientated recommendations until further evidence and systematic guidelines are available.

Statements:
1. Indications and setting
• ED should only be applied by experienced burn teams after adequate training in ED.
• Enzymatic Debridement (ED) with Nexobrid is a safe and reliable alternative tool for early eschar removal in adults.
• ED can be applied in pediatric patients and is performed with satisfying results but this is currently considered as off label use.
• In case of a moist burn eschar, ED can be applied to all burned surfaces.
• ED is advantageous in treatment for hands, feet and face.
• Contact of ED to the eyes and the tympanum should be avoided.
• ED preserves viable dermis more efficiently compared to SOC.
• ED as the only procedure for debridement should be limited to thermal burns, i.e. scald/flame/contact burns.
• In additional trauma, such as high voltage injury, blast injury or crush burn, surgical techniques should be applied in order to release muscular compartment pressure and provide nerve decompression.
• ED cannot be recommended for eschar removal in chemical burns.
• Prestreatment with silver sulfadiazine or betadine should be avoided.
• Standard burn wound and depth assessment is sufficient prior to ED.
• Frequent photography and wound documentation is strongly recommended to provide wound documentation for all members of the burn team.
• ED can be regarded as a useful tool in case of limited OR capacity.
• ED can be safely applied in up to 15% BSA in one session (label).
• Up to 30% BSA can be treated by ED based on individual need, but this is considered as off label use.
• Topicals are recommended for additional eschar removal in circumferential extremity burns to prevent surgical escharotomy as SOC but not to replace fasciotomy.
• The extremity should be monitored and surgical escharotomy and/or fasciotomy should be performed if signs of deterioration appear.

2. Pain Management and Anesthesia
• Adequate pain management is essential before, during and after ED.
• Regional anesthesia is recommended for ED at the isolated (upper) extremity.
• Analgesics-based intravenous sedation or general anesthesia is recommended for ED at the trunk and if different regions are treated at the same time.

3. Timing of Application
• ED can be applied immediately after initial assessment and wound preparation.
• Later application (>72 hours from injury) is possible in selected patients after appropriate preparation.

4. Application of ED
• Preparation of the wound by blister removal and superficial debridement of keratin remnants is performed prior to ED (before or after pre-soaking).
• A moist wound environment is essential prior to ED, because ED does not work in dry wounds.
• A moist wound environment can be achieved by a pre-soaking phase of at least 2 hours in acute burns (<72 hours from injury).
• Pre-soaking might not be required, if a moist wound environment is present prior to ED.
• Wound debridement is not recommended in an emergency indication for the prevention of burn induced compartment syndrome.
• An additional mechanical cleaning step can be performed at the end of the pre-soaking phase.

5. Preparation of the wound
• The enzymes should be applied for 4 hours.
• 2g/1% BSA should be applied in adult patients in order to achieve an active agent layer of approximately 1.5-mm thickness.
• Even distribution of the enzymes over the entire wound area is required.
• The application of a moist dressing for at least 2 hours is recommended.
• Pre-cooled application up to 18 hours can improve the results of ED.
• ED requires sterile occlusive dressings with minimal dead space.
• The dressing during ED includes:
• An adhesive local barrier (i.e. parafilm/vaseline gauze or ointment, or stoma paste) is necessary should be applied 2-3 cm outside the treated area to prevent leakage of the active agent.
• Occlusive film
• Bulky, protective dressing
• Complete eschar removal should be achieved within 7 days of injury.
• Re-application of ED after initial failure is currently not recommended.
• Wound assessment should be performed within 2 hours after ED.
• Post-ED wound bed color and bleeding patterns play a key role in diagnosing the resulting depth of the burn wound.
• A uniform red or pink post ED wound bed represents high chances for spontaneous healing.
• A uniform white post ED wound bed with pin-point punctate bleeding has good chances for spontaneous healing with acceptable results.
• A post ED wound bed with large diameter red circles or oval patterns is associated with prolonged healing and skin grafting should be considered in these wounds.
• Exposed fat post ED is a clear indication for skin grafting.

6. Post-ED wound care of wounds after enzymatic debridement – wound management
• Dead skin and the residues of the eschar and dissolved dermis should be removed by scraping.
• After ED, it is necessary to keep a moist environment to avoid desiccation.
• Pseudo-eschar is a specific layer sticking to the wound that may develop several days after ED.
• If an occlusive layer remains >14 days, re-debridement should be taken into consideration.
• Granulation tissue may develop in prolonged unhealed healing after ED starting at day 14.
• Hypergranulation is a sign of insufficient reepithelization.
• Granulation tissue requires topical treatment followed by secondary healing or surgical treatment.
• Tissue partial necrosis can be recommended to avoid hypergranulation.

7. Scar prevention
• Scar treatment (Massage, ointment, compression garments, silicon, etc.) should immediately start after healing.

8. Blood loss
• ED reduces blood loss compared to SOC.
• ED might induce relevant blood loss in patients with coagulopathy or therapeutic anticoagulation.

9. Training strategies
• ED requires standardized protocols and significant experience in the field of burn care and burns.
• ED requires clear communication and multi-professional training.
• Logistic requirements of ED have to be considered prior to implementation.

Host:
Medical Faculty Heidelberg

BG Klinik Berufsgenossenschaftliche Unfallklinik Ludwigshafen